Systematik der Seltenerdmetall-Blei-Legierungen*

Von

Karl A. Gschneidner jr. und O. D. McMasters

Aus dem Institut für Atomic Research und Department of Metallurgy, Iowa State University, Ames, IA 50010, U.S.A.**

Mit 8 Abbildungen

(Eingegangen am 19. März 1971)

Systematics of the Rare Earth—Lead Alloys

The systematic behavior (and also the lack of it) in the rare earth—lead alloys is examined. Twelve different compound stoichiometries have been observed. Nearly all of the trivalent lanthanide elements form the R_5Pb_3 , R_5Pb_4 , and RPb_3 phases. For the other stoichiometries, except for possibly RPb_2 , compounds exist for only a limited number of the lanthanide elements. The known crystallographic data are reviewed, and the existence and nonexistence of some of the phases are discussed on the basis of crystal chemistry theories. The melting behaviors of the *R*-rich eutectic and the R_5Pb_3 , RPb_2 and RPb_3 phases are presented. The known information on these alloys is examined on the basis of the relative volume contractions and the 4 *f* contribution to the bonding, and the results are used to predict the relative stabilities of the R_5Pb_3 , RPb_2 , and RPb_3 compounds.

Das systematische Verhalten (sowie dessen Fehlen) der Seltenerdmetall-Blei-Legierungen wird untersucht. Es wurden 12 verschiedene Verbindungsstöchiometrien beobachtet. Fast alle dreiwertigen Lanthanidenelemente bilden die Phasen R₅Pb₃, R₅Pb₄ und RPb₃. Von den anderen möglichen Stöchiometrien kommen, mit Ausnahme von RPb2, nur von einigen Lanthaniden Verbindungen vor. Die bekannten kristallographischen Daten werden durchbesprochen und die Existenz und Nichtexistenz einiger Phasen auf Grund kristallchemischer Theorien diskutiert. Das Schmelzverhalten der R-reichen Eutektika und der Phasen R_5Pb_3 , RPb_2 und RPb_3 wird dargestellt. Die bekannten Informationen über diese Legierungen werden auf der Basis der relativen Volumskontraktionen und des 4f-Beitrags zur Bindung überprüft und die Ergebnisse zu Voraussagen über die relativen Stabilitäten der Verbindungen R5Pb3, RPb2 und RPb3 verwertet.

* Herrn Prof. Dr. H. Nowotny gewidmet.

** Die Arbeiten wurden im Ames-Laboratorium der US-Atomenergiekommission durchgeführt (Beitrag Nr. 2972). 1500 K. A. Gschneidner jr. und O. D. McMasters: [Mh. Chem., Bd. 102

Einführung und allgemeine Natur der R-Pb-Diagramme

Vor etwa fünf Jahren begannen im Ames Laboratory der Iowa State University ausgedehnte Untersuchungen der Seltenerdmetall-Blei-Systeme. In diesem Zeitraum wurden acht der siebzehn möglichen

Abb. 1. Auftretende bzw. nichtauftretende Lanthanid—Blei-Phasen. Im
System Y—Pb treten nur die Phasen Y₅Pb₃, Y₅Pb₄, YPb₂ und YPb₃ auf².
Vom System Sc—Pb weiß man nur von der Existenz von Sc₅Pb₃¹⁰

binären Systeme gründlich untersucht und mit Hilfe der Differentialthermoanalyse und röntgenographischer und metallographischer Methoden vollständige Phasendiagramme aufgenommen¹⁻⁹. Man fand, daß insgesamt zwölf verschiedene Verbindungsstöchiometrien vorkommen (Abb. 1), jedoch in *einem* Phasendiagramm *nie* mehr als sieben (Pr-Pb). Die kleinste beobachtete Phasenanzahl war vier, und zwar bei Eu-Pb, Yb-Pb und Y-Pb.

Die Natur der Eu—Pb- und Yb—Pb-Systeme unterscheidet sich im allgemeinen stark von der der anderen Lanthanidensysteme. Nur die Strukturen von Yb₅Pb₃, EuPb₃ und YbPb₃ stimmen mit denen der normalen dreiwertigen Lanthanide überein (R_5 Pb₃ — Mn₅Si₃-Typ und PPb₃ — AuCu₃-Typ). Die Gitterparameter dieser drei Verbindungen

1501

sind bedeutend größer als die der Verbindungen der benachbarten Lanthanide. Das zeigt, daß Eu und Yb in diesen Phasen zweiwertig sind. Da diese beiden Lanthanide sich wie zweiwertige Elemente verhalten, werden sie in der Besprechung der Phasen, die sich zwischen dreiwertigen Lanthaniden und Blei bilden, nicht berücksichtigt werden.

Betrachtet man Abb. 1, so sieht man, daß die Phasen R_5Pb_3 , R_5Pb_4 und RPb_3 den meisten dreiwertigen Lanthaniden gemein sind. Wir sind überzeugt, daß die Phase RPb_2 in allen diesen Elementen (La bis Lu) gefunden werden wird, daß wahrscheinlich die Phase $R_{11}Pb_{10}$ für La bis Dy und vielleicht auch bis Tm existiert und daß man R_3Pb nur bei einigen wenigen Lanthaniden finden wird, nämlich Ce, Pr und — vielleicht Nd, Pm und Sm.

Die Phase La₄Pb₃ ist ein Einzelfall und dürfte in keinem anderen *R*—Pb-System vorkommen. Das gleiche gilt für Lu₆Pb₅, jedoch besteht hier die Möglichkeit der Existenz isostruktureller Verbindungen in den Systemen Ho—Pb, Er—Pb und Tm—Pb. Die Verbindungen R_3 Pb₄ und R_6 Pb₇ können möglicherweise identisch sein. Unsere Ergebnisse sprechen mehr für zwei verschiedene Zusammensetzungen und Strukturen, wie Abb. 1 sie zeigt. Wahrscheinlich kommt die Phase R_3 Pb₄ vom La bis in den Bereich Nd—Sm vor und die R_6 Pb₇-Phase vom Bereich Nd—Sm bis Gd und vielleicht Tb.

Wie unseren Aussagen im vorangehenden Absatz zu entnehmen ist, herrscht eine gewisse Unsicherheit in unseren veröffentlichten Ergebnissen. Dies trifft besonders in dem Bereich von R_5 Pb₃ (37,5 At%) bis RPb_2 (66,7 At%) zu. Wir hatten große Schwierigkeiten, verläßliche Ergebnisse von röntgenographischen, metallographischen und thermoanalytischen Messungen zu erhalten. Diese Schwierigkeiten werden durch mangelhafte Gleichgewichtseinstellung (auch nach langer Glühdauer) und schnelle Oxidation der Probe an der Luft verursacht.

Kristallstrukturen

Die Tab. 1 bis 6 fassen die bekannten Angaben über die Kristallstrukturen zusammen. In Tab. 1 sind die Gitterkonstanten der R_3 Pb-Phasen (25,0 At% Pb) Cu₃Au, L1₂-Typ, und R_2 Pb-Phase (33,3 At% Pb) Co₂Si, C37-Typ angeführt. Die Gitterparameter der Ce₃Pb- und Pr₃Pb-Phasen entsprechen etwa den Erwartungen, die man nach den Werten der Gitterkonstanten der entsprechenden RPb₃-Verbindungen, die gleichfalls AuCu₃-Struktur besitzen, hat. Die Existenz von Ce₃Pb und Pr₃Pb könnte durch Stabilisierung durch Verunreinigungen verursacht sein, wie man das bei einer Anzahl anderer R_3M -Phasen gefunden hat. Wir haben jedoch keine Befunde, die ausreichen würden, diese Möglichkeit zu bestätigen oder abzulehnen.

1502 K. A. Gschneidner jr. und O. D. McMasters: [Mh. Chem., Bd. 102

Verbindungen vom Co₂Si-Typ existieren nur bei den zweiwertigen Lanthaniden Eu und Yb. Auch von Ca₂Pb wurde berichtet²⁶, daß es in diesem Strukturtyp kristallisiere. Das Volumen der Elementarzellen dieser drei Verbindungen ändert sich gleichmäßig in Abhängigkeit von

Ver- bindung	Kristall- system	Strukturtyp	a (Å)	b (Å)	c (Å)	Literatur
$\left. \begin{array}{c} \operatorname{Ce_{3}Pb} \\ \operatorname{Pr_{3}Pb} \end{array} \right\}$	kubisch	L12, Cu3Au	$ { $		<u> </u>	11 8, 9
${f Eu_2Pb} $ Yb ₂ Pb	orthorhombisch	C37, Co ₂ Si	${7,975 \pm 4 \ 7,478 \pm 5}$	${ 5,394 \pm 2 \atop 5,225 \pm 2 }$	$\begin{array}{c} 9{,}991 \pm 5 \\ 9{,}549 \pm 4 \end{array}$	diese Arbeit

Tabelle 1. Kristallstrukturen der Phasen R₃Pb und R₂Pb

Tabelle 2. Kristallstruktur der R_5 Pb₃-Phase, hexagonal D8₈, Mn₅Si₃-Typ

Verbindung	a Å	c Å	Literatur
La_5Pb_3 Ce_5Pb_3 Pr_5Pb_3 Nd_5Pb_3 Sm_5Pb_3 Gd_5Pb_3 Dy_5Pb_3 Dy_5Pb_3 Ho_5Pb_3 Er_5Pb_3 Tm_5Pb_3 Yb_5Pb_3 Lu_5Pb_3 Se_5Pb_3	$9,526 \pm 2$ $9,473 \pm 4$ $9,345 \pm 9$ $9,278 \pm 14$ $9,166 \pm 4$ $9,083 \pm 10$ $9,022 \pm 4$ $8,961 \pm 4$ $8,961 \pm 4$ $8,868 \pm 2$ $8,837 \pm 5$ $9,325 \pm 3$ $8,768 \pm 8$ $8,467 \pm 4$	$egin{array}{c} 6,994\ \pm\ 1\\ 6,825\ \pm\ 2\\ 6,818\ \pm\ 9\\ 6,778\ \pm\ 8\\ 6,693\ \pm\ 6\\ 6,644\ \pm\ 7\\ 6,602\ \pm\ 6\\ 6,560\ \pm\ 14\\ 6,536\ \pm\ 5\\ 6,506\ \pm\ 2\\ 6,489\ \pm\ 2\\ 6,929\ \pm\ 3\\ 6,441\ \pm\ 22\\ 6,158\ \pm\ 3 \end{array}$	5, 10 10 9, 12, 13 12, 13 12, 13 12, 13 6, 12, 13 12, 13 12, 13 14, 12, 13 12, 13 12, 13 12, 13 12, 13 12, 13 12, 13 10
$\mathbf{Y}_{5}\mathbf{Pb}_{3}$	8,971 \pm 4	$6,614~\pm~3$	10

(Mittelwerte aus den angegebenen Literaturstellen)

Tabelle 3. Kristallstrukturen von Eu₅Pb₃ und La₄Pb₃

Ver- bindung	Kristall- system	Strukturtyp	a (Å)	с (Å)	Literatur
$\mathrm{Eu}_5\mathrm{Pb}_3$	tetragonal	D8 _m , W ₅ Si ₃	13,190 ± 7*	6,214 \pm 1 *	¹⁴ und diese Arbeit
La_4Pb_3	kubisch	$\mathrm{anti} ext{-}\mathrm{D7}_3,\ \mathrm{anti} ext{-}\mathrm{Th}_3\mathrm{P}_4$	9,8188 \pm 8		5

* Mittelwerte aus den angeführten Literaturstellen.

H. 5/1971]

Verbindung	$\overset{a}{\mathbb{A}}$	$egin{array}{c} b \ { m \AA} \end{array}$	$\overset{c}{\mathbb{A}}$	Literatur
La_5Pb_4	8.538 + 6	16,31 + 1	8,674 + 6	15
Ce_5Pb_4	8.435 + 6	16,15 + 1	8,571 + 6	15
Pr_5Pb_4	8,377 + 6	16,04 + 1	$8,523 \pm 6$	15
Nd_5Pb_4	8,331 + 6	15,94 + 1	8,467 + 6	15
$\mathrm{Sm}_5\mathrm{Pb}_4$	8,244 + 6	15,78 + 1	$8,363 \pm 6$	15
Gd_5Pb_4*	$8,176\pm 6$	$15,64 \pm 1$	$8,293 \pm 6$	15
Tb_5Pb_4	$8,169\pm 6$	$15,55\pm1$	$8,218~\pm~6$	15
Dy_5Pb_4*	$8,127\pm 6$	$15,46 \pm 1$	$8,194\pm 6$	15
Ho_5Pb_4	$8,095\pm6$	$15,41\pm1$	$8,148\pm 6$	15
$ m Er_5Pb_4$	$8,081 \pm 6$	$15,33\pm1$	$8,117\pm 6$	15
$\mathrm{Tm}_{5}\mathrm{Pb}_{4}$	$8,049\pm 6$	15,26 \pm 1	$8,090\pm6$	15
$ m Y_5Pb_4$	7,994 \pm 5	15,10 \pm 1	$8,241~\pm~5$	2

Tabelle 4. Kristallstruktur der R_5 Pb₄-Phase, orthorhombisch, Sm₅Ge₄-Typ

* Nach Angabe der Autoren sind $Gd_5Pb_4^6$ und $Dy_5Pb_4^4$ isotyp mit Sm_5Ge_4 , jedoch mit a = c.

Tabelle 5. Kristallstruktur von α-Lu5Pb4, Lu6Pb5, LuPb2 und PrPb2

Ver- bindung	Kristall- system	Strukturtyp	a (Å)	b (Å)	с (Å)	Literatur
α -Lu ₅ Pb ₄	orthorhombisch	α -Lu ₅ Pb ₄	16,55	6,50	19,54	7
${\rm Lu_6Pb_5}$	orthorhombisch	$\mathrm{Lu}_6\mathrm{Pb}_5$	20,00	9,17	6,42	7
LuPb_2	tetragonal	Cllb, MoSi2	$3,7061\pm4$		$13,\!120\pm5$	7
$\Pr{Pb_2}$	tetragonal	$HfGa_2$	4,66		32,0	diese Arbeit

Tabelle 6. Kristallstruktur der RPb₃-Phase, kubisch L1₂, AuCu₃-Typ (Mittelwerte aus den angeführten Literaturstellen)

Verbindung	a, (Å)	Literatur	Verbindung	a, (Å)	Literatur
LaPb ₃	$4,904\pm 2$	5, 16, 17	TbPb_{3}	$4,810 \pm 5$	22
$CePb_3$	$4,874\pm1$	18, 19	$DyPb_3$	4,806 + 0	4, 22
$\Pr{Pb_3}$	4,863 + 4	9, 20	$HoPb_3$	4,800 + 5	22
$MdPb_3$	4,852	21	ErPb_{3}	4,797 + 5	22
${ m SmPb}_3$	4,835	21	$TmPb_3$	4,794 + 5	22
$EuPb_3$	$4,917 \pm 2$	3, 22, 23	$YbPb_3$	4,863 + 3	1, 22, 23
$GdPb_3$	$4,824~\pm~6$	6, 22, 24	YPb ₃	4,818 \pm 5	22, 25

den zweiwertigen metallischen Radien dieser Elemente, nämlich Yb 1,939 Å, Ca 1,974 Å und Eu 2,041 Å.

In Tab. 2 sind die Gitterparameter der Phasen R_5 Pb₃ (37,5 At%), Mn₅Si₃-, D8₈-Typ zusammengestellt. Trägt man a und c gegen die

Ordnungszahl auf, so sieht man, daß sich Ce₅Pb₃ und Yb₅Pb₃ anomal verhalten. Im Falle von Ce₅Pb₃ ist der Parameter *a* etwas größer (~0,05 Å) als der von den normalen dreiwertigen Lanthanidenverbindungen R_5 Pb₃ aufgestellten Kurve entspricht, der *c*-Parameter hingegen ist etwas kleiner (~0,05 Å). Trägt man jedoch die Volumina der Elementarzellen gegen die Ordnungszahl auf, so liegt der Wert von Ce₅Pb₃ auf der Kurve. Bei Yb₅Pb₃ sind beide Parameter *a* und *c* viel größer als die der unmittelbaren Nachbarn, weil in dieser Verbindung Yb zweiwertig ist. Eu₅Pb₃ hat die nahe verwandte Struktur W₅Si₃-D8_m-Typ (Tab. 3). Wahrscheinlich ist das zweiwertige Europiumatom zu groß, um mit Blei eine Phase vom Mn₅Si₃-Typ zu bilden.

In Tab. 3 findet sich außerdem der Gitterparameter von La₄Pb₃ (42,8 At% Pb) vom anti-Th₃P₄-anti D7₃-Typ. Diese Verbindung ist ein Einzelfall in den Systemen R-Pb. Eine Suche nach dieser Struktur in den Systemen Ce-Pb, Pr-Pb, Nd-Pb und Sm-Pb in Ergänzung zu vollständigen Phasendiagrammuntersuchungen (Dy-Pb, Yb-Pb, Lu-Pb und Y-Pb) gab keinen Hinweis auf ihre Existenz. Diese Ergebnisse stimmen mit der Beobachtung von Gambino²⁷ überein, daß die anti-Th₃P₄-Phase nur in einem schmalen Bereich des Radiusverhältnisses existieren. Gambino stützt sich auf die Ionenradien. was für das Bleianion zu einer Schwierigkeit führt. Verwendet man die metallischen Radien, so wird diese Schwierigkeit überwunden und die Beziehung bleibt noch immer erhalten. Die Radienverhältnisse r_M/r_R (M = Nichtmetallatom, d. h. Bi, Sb, As, Pb, R = Seltenerdmetallatom) der von Gambino angegebenen Verbindungen liegen zwischen 0,828 (Eu₄Bi₃) und 0,938 (Gd₄Bi₃). In La₄Pb₃ ist das Radienverhältnis 0,932, bei den übrigen dreiwertigen Lanthaniden liegt es zwischen 0,948 (bei Ce-Pb) und 1,009 (bei Lu-Pb). So kann man vielleicht durch die Größenbeziehung von Gambino erklären, warum von den anderen Lanthaniden keine Verbindungen R_4Pb_3 gebildet werden. Die Radienverhältnisse der Eu(+2)-Pb- und Yb(+2)-Pb-Legierungen fallen jedoch in den Bereich von 0,828 bis 0.938. Es ist aber gut möglich, daß sie keine Verbindung R_4 Pb₃ aus dem Grunde bilden, weil ihre Valenzelektronenkonzentrationen zu gering sind: Sie liegen bei den zweiwertigen Lanthaniden und Blei bei 2,86, verglichen mit 3,43 bei La₄Pb₃ und noch höher bei den Verbindungen R_4B_3 , R_4Sb_3 und R_4As_3 .

Der R_5 Pb₄(44,4 At%Pb)—Sm₅Ge₄-Typ kommt bei den meisten Lanthaniden vor. In Tab. 4 finden sich die Gitterparameter dieser orthorhombischen Phasen. Darstellung der Gitterparameter als Funktion der Ordnungszahl zeigt keinerlei Anomalie. Alle drei Parameter nehmen gleichmäßig mit wachsender Ordnungszahl ab. Das zeigt, daß sich Ce in dieser Verbindung als dreiwertiges Metall verhält. Die Parameter *a* und *c* nähern sich einander an, wenn man R von La (c - a = 0,136 Å) bis Tm (c - a = 0,041 Å) ändert.

Es existiert auch die Verbindung Lu_5Pb_4 , sie hat jedoch offensichtlich eine andere Struktur, die mit keiner bekannten 5 : 4-Phase isostrukturell ist; ihre Gitterparameter stehen in Tab. 5.

Eine weitere ungewöhnliche Verbindung des Lu ist die Lu₆Pb₅-Phase (45,4 At% Pb). Soweit bisher bekannt, gibt es keine mit Lu₆Pb₅ isostrukturelle Verbindungen; es wäre aber möglich, daß isostrukturelle Phasen bei einer Anzahl schwerer Lanthanide (Ho—Tm) existieren. Die Gitterparameter des Lu₆Pb₅ sind in Tab. 5 aufgeführt; die genaue Stöchiometrie wird erst nach einer vollständigen Strukturermittlung angebbar sein.

Über die RPb₂-Phasen (66,7 At% Pb) fanden sich Angaben von zwei Strukturen, nämlich für LuPb2 der MoSi2-Cllb-Typ und für YPb2 der ZrSi₂-C49-Typ. Letztere Angabe stellte sich als irrig heraus und sollte in der Literatur richtiggestellt werden. YPb2 kristallisiert also nicht in einer Struktur des ZrSi2-Typs. Die Pulveraufnahmen von LuPb2 wurden auf Grund einer Struktur des MoSi2-Typs indiziert und aus den in Tab. 5 zusammengestellten Parametern erhält man eine Elementarzelle, die zwei Lu-Atome und vier Pb-Atome enthält, wobei die Kontraktion der Elementvolumina nur nahezu null Prozent beträgt. Das ist ungewöhnlich, denn die charakteristischen Kontraktionen des Elementvolumens in Lanthanid-Blei-Verbindungen betragen 2-10%. In den La-Pb-, Pr-Pb-, Gd-Pb- und Dy-Pb-Systemen finden sich Strukturen des MoSi₂-Typs in den Pulveraufnahmen von Legierungen mit 50-65 At% Pb. Die Elementarzellen dieser Phasen ergeben eine Expansion des Elementvolumens, die eine Verschiebung der Stöchiometrie von R_2 Pb₄ auf etwa R_3 Pb₄ (57,1 At% Pb) vermuten läßt. Es ist möglich, daß diese Phase durch Verunreinigungen stabilisiert ist, denn die Pulveraufnahmen wurden von Pulvern gemacht, die lange Zeit hitzebehandelt wurden (einen Monat bei 500° C).

Die Pulveraufnahmen einer PrPb₂-Probe wurden auf Grund einer Struktur des HfGa₂-Typs indiziert. Die Parameter sind in Tab. 5 angeführt. Unsere bis heute unternommene Untersuchung^{1-7, 9} der Verbindungen im 50—70 At% Pb-Gebiet wird fortgesetzt, um zu versuchen, diese Kristallstrukturen und Zusammensetzungen aufzuklären.

Der $RPb_3(75 \text{ At\%Pb})$ —AuCu₃-L1'₂-Typ kommt bei allen Lanthaniden (mit Ausnahme von Lu) vor. Die Gitterparameter dieser Phasen sind in Tab. 6 zusammengestellt. Trägt man *a* gegen die Ordnungszahl der Lanthanidatome auf, so liegt EuPb₃ und YbPb₃ deutlich über der von den normalen dreiwertigen Lanthaniden gebildeten Kurve. Weiters liegt CePb₃ auf der Kurve und es ist daher anzunehmen, daß Ce in dieser Verbindung dreiwertig ist. Die großen Gitterparameter in EuPb₃- und YbPb₃-Verbindungen werden durch die zweiwertige Natur von Eu und Yb hervorgerufen und stimmen mit den Werten überein, die man bei CaPb₃- und SrPb₃-Verbindungen erhält²⁶. CaPb₃ ist mit diesen Verbindungen isotyp und sein Gitter ist dem des YbPb₃ annähernd gleich. SrPb₃ hat eine tetragonale Struktur, die eine leichte Verzerrung der kubischen Struktur vom AuCu₃-Typ darstellt.

Abb. 2. Koordinationszahlen der Lanthanide und des Bleis in den bekannten Lanthanid—Blei-Verbindungen

Abb. 2 zeigt die Koordinationszahlen der Lanthanide und des Bleis in den bekannten Strukturen. Betrachtet man nur die Zusammensetzungen, von denen von fast alle Lanthanide Verbindungen bilden (5:3, 5:4, 1:2 und 1:3), so nehmen die Koordinationszahlen der Lanthanide mit wachsender Bleikonzentration ab, die des Bleis hingegen nimmt zu. Dieses Zunehmen der Koordinationszahl des Bleis und auch dessen Größe, die sich von 8 auf 12 ändert, findet man in ähnlicher Weise bei dem Nichtlanthanidmetall in den Lanthanid—Zink-²⁸ und Lanthanid—Gold²⁹-Verbindungen. Der Trend in der Reihe der Koordinationszahlen der Lanthanide in diesen Bleiverbindungen läuft jedoch dem bei den Lanthanidverbindungen mit Zink²⁸ und Gold²⁹ entgegen. Weiters sind die Koordinationszahlen der Lanthanide in den Bleiverbindungen (14,5—12) etwas kleiner als in den Zink- (14—21) und Goldverbindungen (13,5—15). Darüber hinaus ist im Falle des Bleis die Koordinationszahl der Lanthanide in den Verbindungen, die nur von den leichten Lanthaniden gebildet werden, kleiner als der von den anderen Verbindungen erhaltenen Kurve entspricht (d. h. die Werte liegen links von der Kurve), bei Zink und Gold hingegen haben die Verbindungen der leichten Lanthanide die *höheren* Koordinationszahlen. Diese Verschiedenheiten lassen vermuten, daß in den Lanthanid—Blei-Verbindungen die Bildung mehr kovalenter und weniger metallischer Natur ist als die Bindung in den Lanthanidverbindungen mit Zink und Gold.

Schmelzpunkte

Die Zugabe von Blei zu einem Seltenerdmetall setzt dessen Schmelzpunkt um 50-400° C herab und führt zu einer eutektischen Reaktion. (Dies trifft sowohl für zweiwertiges als auch dreiwertiges Seltenerdmetall zu.) Abb. 3 zeigt die eutektische Temperatur als Funktion der Ordnungszahl des Seltenerdmetalls. Die eutektischen Temperaturen von $R-R_5Pb_3$ liegen auf einer glatten Kurve, die fast parallel zu den Schmelzpunkten der Seltenerdmetalle ansteigt. Wäre diese Parallelität exakt, müßten die reduzierten Temperaturen auf einer Horizontalen liegen. Von den Pr., Eu- und Yb-reichen Legierungen ist nicht zu erwarten, daß ihre eutektischen Temperaturen auf der bei den übrigen Seltenen Erden erhaltenen Kurve liegen, weil bei diesen drei Seltenen Erden die Verbindungskomponente des Eutektikums verschieden ist. Im Falle des Pr ist sie die Verbindung Pr₃Pb, bei den beiden anderen ist sie Eu₂Pb bzw. Yb₂Pb. Aus Abb. 3 ersieht man weiters, daß die reduzierten eutektischen Temperaturen der Eu-Pb- und der Yb-Pb-Legierungen auf einer horizontalen Geraden liegen.

Aus den Werten in Abb. 3 kann man Voraussagen über die eutektischen Temperaturen von Systemen machen, über die keine Informationen vorliegen. Im System Ce—Pb (und vielleicht auch in den Systemen Nd—Pb, Pr—Pb und Sm—Pb) ist jedoch eine gewisse Vorsicht angebracht, da die lanthanidenreiche Komponente R_3 Pb statt R_5 Pb₃ ist (sein kann). Darüber hinaus zeigt diese Darstellung (ebenso wie einige spätere Abbildungen) die Notwendigkeit, die Schmelzpunkte der Endglieder der Lanthanidreihe festzustellen, wenn man vorhat, unbekannte Werte abzuschätzen. Eine Extrapolation der aus den Punkten von La, Gd und Dy erhaltenen Kurve würde z. B. für Lu zu einem um 60° C höheren Schätzwert der eutektischen Temperatur führen, als er beobachtet wird.

Abb. 4 zeigt das Schmelzverhalten der R_5 Pb₃-Phasen. Die Schmelzpunkte steigen vom La her langsam an und scheinen bei Er oder Tm ein Maximum zu erreichen. Ob hier wirklich ein Maximum existiert, muß noch experimentell bestätigt werden. Die zweiwertige Natur von Eu und Yb in diesen R_5 Pb₃-Verbindungen geht aus den niedrigen Schmelzpunkten der Verbindungen eindeutig hervor. Die reduzierten Schmelztemperaturen der R_5 Pb₃-Verbindungen, die dreiwertige Seltenerdmetalle enthalten, liegen auf einer Geraden. Das stimmt mit den Ergebnissen überein, die bei anderen Lanthanidenverbindungen gefunden wurden³⁰. Jede der in Abb. 4 gezeigten Kurven kann zur Abschätzung der Schmelzpunkte der anderen R_5 Pb₃-Verbindungen herangezogen werden.

Abb. 3. Die lanthanidreiche eutektische Temperatur, T_{eut} , und die reduzierte eutektische Temperatur, T_{eut}/T_R , als Funktion der Ordnungszahl. Der Vollständigkeit halber sind auch die Werte von Yb—Pb aufgenommen. Die Werte von Y liegen zwischen Dy und Ho, weil die Größe von Y zwischen diesen beiden Metallen liegt

Abb. 5 zeigt die Schmelzpunkte der Verbindungen RPb_2 . Das Fallen der Schmelzpunkte als Funktion der Ordnungszahl ist entgegengesetzt dem Verhalten bei den R_5Pb_3 -Verbindungen. Wieder sieht man aus dem plötzlichen Abfall der Schmelzpunkte gegen das Ende der Lanthanidreihe, wie gefährlich es ist, eine solche Kurve zur Extrapolation von Werten heranzuziehen. Die strichlierte Linie zeigt, daß sich ein Fehler von etwa 225° C ergäbe, wollte man den Schmelzpunkt für Lu aus Werten extrapolieren, die von La, Pr, Gd und Dy erhalten wurden. Die Vorteile, die sich ergeben, wenn man die reduzierten Temperaturen verwendet, um Werte durch Extrapolation abzuschätzen, sind also ziemlich offenkundig. Jede der Kurven kann in zufriedenstellender Weise herangezogen werden, um unbekannte Schmelzpunkte durch Interpolation abzuschätzen, vorausgesetzt, daß der Verlauf der Kurve der Schmelzpunkte hinreichend gut bekannt ist.

Die Schmelzpunkte der Phasen RPb_3 nehmen mit wachsender Ordnungszahl des Lanthanidelements ab (Abb. 6). Die Erniedrigung des Schmelzpunkts von einem Lanthanid zum anderen erfolgt in dieser

Abb. 4. Schmelzpunkte und reduzierte Schmelzpunkte, $T_{R_3Pb_3}/T_R$, von R_5Pb_3 als Funktion der Ordnungszahl. Der Vollständigkeit wegen sind auch die Werte von Y—Pb aufgenommen. Die Werte von Y liegen zwischen Dy und Ho, weil die Größe von Y zwischen diesen beiden Metallen liegt

Verbindungsreihe schneller als in den Phasen RPb_2 . Bei den leichten Lanthaniden schmelzen die RPb_3 -Phasen kongruent, bei den schweren Lanthaniden hingegen inkongruent, und zwar bei einer tieferen Temperatur als in der entsprechenden RPb_2 -Phase. Legt man die Abb. 5 und 6 übereinander, so sieht man, daß bei Nd und Sm die kongruent schmelzende RPb_3 -Phase bei derselben Temperatur schmelzen würde wie die RPb_2 -Phase, und daß man bei den Lanthaniden mit höheren Ordnungszahlen erwarten sollte, daß sowohl die RPb_2 - als auch die RPb_3 -Phasen inkongruent schmelzen.

Abb. 5. Schmelzpunkte und reduzierte Schmelzpunkte, T_{RPb_2}/T_R , von RPb_2 als Funktion der Ordnungszahl. Der Vollständigkeit wegen sind auch die Werte von Y—Pb aufgenommen. Die Werte von Y liegen zwischen Dy und Ho, weil die Größe von Y zwischen diesen beiden Metallen liegt

Abb. 6. Schmelzpunkte und reduzierte Schmelzpunkte, T_{RPb_3}/T_R von RPb_3 als Funktion der Ordnungszahl. Der Vollständigkeit wegen sind auch die Werte von Y—Pb aufgenommen. Die Werte von Y liegen zwischen Dy und Ho, weil die Größe von Y zwischen diesen beiden Metallen liegt

Volumskontraktionen

Wir haben schon gesagt, daß bei den drei Verbindungsreihen, deren Kristallstrukturdaten vorliegen (R_5Pb_3 , R_5Pb_4 und RPb_3), die normale Lanthanidkontraktion beobachtet wird. Vor zwei Jahren wurde jedoch festgestellt, daß zur Korrelierung und Voraussage der freien Bildungs-

Abb. 7. Volumsverhältnis (Volumen der Elementarzelle dividiert durch Atomvolumen des Lanthanids), relativ zu Lanthan, als Funktion der Ordnungszahl

enthalpien (Bildungswärmen) und der Tendenzen der Schmelzpunkte in den Verbindungsreihen der Lanthanide die relative Lanthanidkontraktion von viel größerer Bedeutung ist³⁰. In Abb. 7 ist für diese drei Verbindungsreihen das Volumsverhältnis relativ zum Lanthan aufgetragen. Bei den Verbindungen R_5 Pb₃ nimmt das Volumsverhältnis mit wachsender Ordnungszahl ab, bei den Verbindungen R_5 Pb₄ und RPb₃ hingegen zu. Diese Diagramme lassen die voraussehen, daß die R_5 Pb₃-Verbindungen der schweren Lanthanide stabiler sind als die R_5 Pb₃-Phasen der leichten Lanthanide. Weiters sollten die R_5 Pb₄- und RPb₃- Verbindungen der leichten Lanthanide stabiler sein (eine negativere freie Bildungsenthalpie aufweisen) als die R_5 Pb₄- und RPb₃-Verbindungen der schweren Lanthanide. Mit dieser Voraussage stimmt auch überein, daß LuPb₃ nicht existiert.

Die Tendenzen in den Schmelzpunkten der Verbindungsreihen R_5Pb_3 (Abb. 4), R_5Pb_4 und RPb_3 (Abb. 6) stimmen mit den in Abb. 7 gezeigten Volumskontraktionen überein. Man beachte jedoch, daß diese Beziehung zu den reduzierten, nicht zu den tatsächlichen Schmelzpunkten besteht³⁰.

4f-Beitrag zu den Bindungen

In den letzten Jahren erschienen mehrere Arbeiten³¹⁻³⁹ über den Einfluß der 4f-Elektronen auf die Bindung in den Lanthanidmetallen und ihren Verbindungen. Obwohl ein großer Teil des vorliegenden Wissens nur indirekt erhalten wurde, kann man für die Metalle, die Intermetallverbindungen³⁷ und einige andere Verbindungsreihen der Seltenen Erdmetalle die Kristallstruktursequenzen erklären^{36, 38, 39}. Der am leichtesten abzuleitende Parameter, der gleichzeitig sich bis heute auch als nützlichster Parameter erwies, ist die Größe R_M — R_{4f} , worin R_M der metallische Radius des Lanthanidmetalls in einer Verbindung und R_{4f} der 4f-Radius ist³⁶⁻³⁹. In Abb. 8 sieht man die Werte R_M — R_{4f} dreier Verbindungsreihen Lanthanid—Blei, deren Kristallstrukturen bekannt sind (R_5 Pb₃, R_5 Pb₄ und RPb₃).

Die R_M — R_{4f} -Kurven der Verbindungen R_5 Pb₃ und R_5 Pb₄ verlaufen nahezu parallel zueinander. Man bezeichnet solche Kurven, die in der Nähe der Mitte der Lanthanidreihe ein Maximum aufweisen, als Kurven mit Typ-IV-Verhalten³⁹. Typ-IV-Verhalten zeigt ein starkes Überlappen der 4f-Wellenfunktionen am Anfang und am Ende der Lanthanidreihe im Vergleich zum mittleren Bereich an. Die Werte in Abb. 8 lassen sicherlich einen größeren 4f-Beitrag zur Bindung in R_5 Pb₃-Verbindungen schwerer Lanthanide vermuten als das bei den leichten Lanthaniden der Fall ist. Die bekannten Eigenschaften, nämlich Kristallstrukturen und Schmelzpunkte, zeigen jedoch kein Verhalten, das diese Annahme bestätigen oder widerlegen könnte.

Der Verlauf der R_M — R_{4f} -Kurve in der Reihe RPb_3 läßt sich am besten durch Typ-I-Verhalten beschreiben (d. h. ein Ansteigen des R_M — R_{4f} -Wertes bei den leichteren, und ein Konstantwerden des Wertes bei den schweren Lanthaniden)³⁹. Der Verlauf in der Reihe RPb_3 unterscheidet sich etwas von dem typischen Typ-I-Verhalten, nämlich insofern, daß der R_M — R_{4f} -Wert bei den schweren Lanthaniden kontinuierlich ansteigt, statt jenseits von Gd abzuflachen. Der Verlauf im Falle der RPb_3 -Verbindungen läßt vermuten, daß der Anteil an 4f-Bindung vom Anfang zum Ende der Reihe hin ständig abnimmt. Möglicherweise ist der Anteil an 4*f*-Bindung maßgebend für die beobachtete Schmelzpunktsregelmäßigkeit der *R*Pb₃-Verbindungen sowie für die Existenz dieser Phase bis Yb, aber nicht mit Einschluß von Lu. Was die Schmelzpunktsregelmäßigkeit betrifft, so sollte der Schmelzpunkt um so niedriger

Abb. 8. Differenz zwischen Metallischem Radius und 4f-Radius, R_M — R_{4f} , des Lanthanids als Funktion der Ordnungszahl in den Verbindungsreihen R_5 Pb₃, R_5 Pb₄ und RPb₃

sein, je geringer der 4f-Anteil ist. Dieses Verhalten stimmt mit der Beobachtung überein. Das Vorliegen eines gewissen Anteils an 4f-Bindung dürfte die Phase stabilisieren. Lu besitzt jedoch ein voll aufgefülltes 4f-Niveau und kann daher diese Verbindung nicht bilden, da keine 4f-Elektronen für die Bindung verfügbar sind. Die Existenz von von YPb₃ zeigt jedoch, daß auch andere Faktoren diese Phase stabilisieren können, denn Y besitzt keine 4f-Elektronen. Wir sind daher nicht sicher, ob der 4f-Beitrag ein wichtiger Faktor für die Existenz der RPb_3 -Phase ist, können jedoch andererseits diese Größe nicht für unwichtig halten. 1514 K. A. Gschneidner jr. und O. D. McMasters: [Mh. Chem., Bd. 102

Analysiert man die R—Pb-Verbindungen hinsichtlich des 4f-Beitrags zur Bindung, so kommt man nur schwer zu einem Schluß über die Bedeutung dieses Faktors für diese Stoffe. Offensichtlich bedarf es noch weiterer theoretischer und (oder) praktischer Ergebnisse.

Literatur

¹ O. D. McMasters und K. A. Gschneidner jr., Trans. Met. Soc. AIME 239, 781 (1967).

² O. N. Carlson, F. A. Schmidt und D. E. Diesburg, Trans. Quart. ASM 60, 119 (1967).

³ O. D. McMasters und K. A. Gschneidner jr., J. Less-Common Metals 13, 193 (1967).

⁴ O. D. McMasters, T. J. O'Keefe und K. A. Gschneidner jr., Trans. Met. Soc. AIME **242**, 936 (1968).

⁵ O. D. McMasters, S. D. Soderquist und K. A. Gschneidner jr., Trans. Quart. ASM 61, 435 (1968).

⁶ J. T. Demel und K. A. Gschneidner jr., J. Nucl. Materials 29, 111 (1969).

⁷ O. D. McMasters und K. A. Gschneidner jr., J. Less-Common Metals **19**, 337 (1969).

⁸ R. B. Griffin und K. A. Gschneidner jr., im Druck, Met. Trans.

⁹ O. D. McMasters und K. A. Gschneidner jr., im Druck.

¹⁰ W. Jeitschko und E. Parthé, Acta Cryst. 19, 275 (1965).

¹¹ W. Jeitschko, H. Nowotny und F. Benesovsky, Mh. Chem. **95**, 1040 (1964).

¹² A. Palenzona und M. L. Fornasini, Atti. accad. nazl. Lincei Rend. 40, 1040 (1966).

¹³ W. Jeitschko und E. Parthé, Acta Cryst. 22, 551 (1967).

¹⁴ E. Franceschi, J. Less-Common Metals 22, 249 (1970).

¹⁵ *F. Merlo* und *M. L. Fornasini*, Atti accad. nazl. Lincei Rend. **46**, 265 (1969).

¹⁶ A. Rossi, Atti accad. nazl. Lincei Rend. 17, 839 (1933).

¹⁷ R. J. Gambino, N. R. Stemple und A. M. Toxen, J. Phys. Chem. Solids **29**, 295 (1968).

¹⁸ E. Zintl und S. Neumayr, Z. Elektrochem. **39**, 86 (1933).

¹⁹ F. Ruggiero und G. L. Olcese, Atti accad. nazl. Lincei Rend. **37**, 169 (1964).

²⁰ A. Rossi, Gazz. chim. ital. 64, 832 (1934).

²¹ A. Iandelli, Paper Nr. 3 F, in: The Physical Chemistry of Metallic Solutions and Intermetallic Compounds. London: Her Majesty's Stationery Office. 1959.

²² Yu. B. Kuzma, R. V. Skolozdra und V. Ya. Markiv, Dopovidi Akad. Nauk Ukr. RSR **1964**, 1070.

²³ A. Palenzona, J. Less-Common Metals 10, 290 (1966).

²⁴ A. Iandelli, Atti accad. nazl. Lincei Rend. 29, 62 (1960).

²⁵ G. Bruzzone und A. F. Ruggiero, Atti accad. nazl. Lincei Rend. 33, 465 (1962).

²⁶ W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2. New York: Pergamon Press. 1967.

²⁷ R. J. Gambino, J. Less-Common Metals 12, 344 (1967).

²⁸ G. Bruzzone, M. L. Fornasini und F. Merlo, J. Less-Common Metals **22**, 253 (1970).

H. 5/1971]

²⁹ O. D. McMasters, G. Bruzzone, A. Palenzona und K. A. Gschneidner jr., J. Less-Common Metals **25**, 135 (1971).

³⁰ K. A. Gschneidner jr., J. Less-Common Metals 17, 1 (1969).

³¹ J. D. Axe und G. Burns, Phys. Rev. 155, 331 (1966).

³² G. A. Bandurkin und B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 168, 1315 (1966); Eng. transl. Doklady Chem. 168, 618 (1966).

³³ G. Burns und J. D. Axe, in: Optical Properties of Ions in Crystals, S. 53 (H. M. Crosswhite und H. W. Moos, eds.). New York: Interscience Publ. 1967.

³⁴ G. Burns, Phys. Letters **25** A, 15 (1967).

³⁵ S. F. A. Kettle und A. J. Smith, J. Chem. Soc. 1967 A, 688.

³⁶ W. B. Pearson, J. Less-Common Metals 13, 626 (1967).

³⁷ K. A. Gschneidner jr. und R. M. Valletta, Acta Met. 16, 477 (1968).

³⁸ K. A. Gschneidner jr. und W. B. Pearson, Materials Res. Bull. 3, 951 (1968).

³⁹ K. A. Gschneidner jr., in: Les Éléments des Terres Rares, Vol. 1, S. 81. Paris: Centre National de la Recherche Scientifique. 1970.